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The early stages of contaminant dispersion in shear flows 
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The dispersion of a spot of contaminant in a high-Pdclet-number laminar flow is 
studied by means of the ray method developed by Cohen & Lewis (1967). This method 
is free from the usual severe restrictions on the time range. Thus, it is possible to 
investigate strong shear-distortions of the concentration distribution. Also, the effects 
of rigid boundaries can be allowed for simply by including reflected rays. Three 
examples are studied in detail: stagnation flow, a point vortex and plane Poiseuille 
flow. 

1. Introduction 
The dispersion of a point source of contaminant in a laterally confined flow can be 

regarded as being comprised of three stages (see figure 1). Initially the contaminant 
distribution spreads out symmetrically by molecular diffusion and is carried along at  
the local fluid velocity. Then, as the contaminant cloud becomes larger, it  extends 
over a range of velocities and is pulled out into a highly elongated shape. Finally, the 
contaminant cloud extends right across the flow and the residual cross-stream con- 
centration variations have the same general shape as the velocity profile. 

Following upon G. I. Taylor’s seminal ideas (Taylor 1953, 1954), most theoretical 
investigations of contaminant dispersion have been concerned with the large-time 
behaviour. However, for some applications, as diverse as arterial blood flow (Car0 
1966), and the flow of the Mississippi river (McQuivey & Keefer 19763), there is 
insufficient time for cross-sectional mixing to be achieved. This has led to the develop- 
ment of heuristic approximations (Gill & Sankarasubramanian 1970; McQuivey & 
Keefer 1976a; Smith 1981) and to rigorous analyses of the small-time behaviour 
(Lighthill 1966; Chatwin 1976, 1977; Barton 1978). 

The range of validity for the rigorous analyses is extremely restricted. For Poiseuille 
pipe flow, this is because Lighthill’s remarkable exact analytic solution does not 
include the effects either of longitudinal diffusion or of the walls. In  the more uni- 
versally applicable work of Chatwin and of Barton, the restrictions arise because of 
the need to represent the local velocity field by a Taylor series expansion. Thus, the 
contaminant cloud cannot have grown to a size comparable with the dimensions of 
the flow and cannot have advected into a region of different velocity from the velocity 
at the source (i.e. figure 1 (i), as opposed to figure 1 (ii)). 

The purpose of the present paper is to give a solution for the contaminant distri- 
bution which is free from these restrictions and therefore encompasses the rbgime 
shown in figure l(ii). Instead of making an expansion for small times, we give an 
expansion for large Pdclet numbers (i.e. a Reynolds number for diffusion with the 
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FIGURE 1. Sketch of concentration contours in the early ( i ) ,  moderate (ii), 
and late (5) stages of contaminant dispersion. 

diffusivity of mass replacing that of momentum). The mathematical groundwork was 
done by Cohen & Lewis (1967), and the rigorous validity of the method proved by 
Cohen, Hagin & Keller (1972). The idea is that, by analogy with the role of group- 
velocity paths in wave problems, there are ‘ray’ directions for the transmission of 
information in diffusion problems. Thus, to construct the concentration distribution 
it is first necessary to determine the ray paths, then to evaluate the transmitted in- 
formation, and hence to determine the concentration. One convenient feature of the 
method is that to include the effect of walls it suffices that rays are reflected, with the 
angle of incidence equal to the angle of reflection. 

After the present work had been completed, it was learned that the relevance of 
Cohen & Lewis’s method to advection-diffusion had been recognized over ten years 
ago by Albion D. Taylor (unpublished manuscript?). The problem addressed by 
Taylor is totally general and includes non-constant anisotropic diffusion, unsteady 
compressible flows, and the calculations are carried out to arbitrarily high order. 
The present work can be regarded as being a demonstration that it is a practicable 
proposition to apply Taylor’s ideas to specific flows. A copy of Taylor’s manuscript 
was provided by a referee, and at  his suggestion has been lodged with the editor for 
inspection. 

2. Ray expansion 
There are very few flows for which there are exact solutions of the unsteady 

advection-diffusion equation 
(2.1) 

Here c(x, t)  is the concentration, u(x) the steady laminar flow velocity, V the three- 
dimensional gradient operator, K the constant diffusivity, and P the P6clet number. 

t This paper is available from the editorial office of the Journal of Fluid Mechanics. 

a,c + u . vc  = P-’/CV2c. 
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The exact solutions are either already exponential (Townsend 1951; Lighthill 1966; 
Chatwin 1974), or asymptote to exponentials when P is large (Cohen & Lewis 1967). 
Thus, when seeking asymptotic solutions, it is convenient to build in this structure 
a priori (Cohen & Lewis 1967, equation (5.2.2)): 

c = Aexp( +Pq5). (2.2) 

Here A is an amplitude factor and q5 the decay exponent. The & sign is a technical 
device to ensure that the auxiliary functions preserve the physically correct symmetry 
with respect to reversal of the advective rate of change 2 (a, + u . V ) .  

If we substitute the ansatz (2.2) into (2.1) and collect exp ( f Pq5) and & exp ( & P#) 
terms separately, then we find 

&+u.V)q5 = K(Vq5)2+P--2KV2A, (2.3) 

(2.4) (a, + u. V )  A = K V .  (AVq5) + K V q 5 .  VA.  

Although it is not justifiable to delete the P-' diffusive term in (2.1), it is justifiable 
to neglect the P2 term in (2.3). The reason for this is that the concentration is a 
rapidly varying function of position, but by means of the nonlinear transformation 
(2.2), we have changed dependent variables to the gradually varying auxiliary func- 
tions A , # .  Thus, in (2.3) the presence of the small parameter P-2 genuinely means 
that the corresponding term is negligible. 

We record that the splitting (2.3), (2.4) into two equationsisnot unique. For example, 
Cohen & Lewis (1  967, equations (3.1.2), (3.1.3)) use the decomposition 

( a , + u . V ) #  = K ( V q 5 ) 2 ,  (2.5) 

(2.6) 

The leading-order terms are the same as in (2.3) and (2.4). However, if higher-order 
corrections are sought, then the present approach is preferable in that the expansion 
proceeds as P-2 and not as P-1. 

(8, + u . V )  A = K V  . (AVq5) + K V q 5 .  VA + P-lKVaA. 

3. Ray tracing 
In the terminology of ray methods, (2.3) with the P-2V2A term neglected, is called 

the 'eikonal ' equation. This equation is a nonlinear first-order partial differential 
equation and can be solved by the method of characteristics (Courant & Hilbert 1962, 
chapter 2). The characteristic or ray velocity is given by 

R = U - 2KV4, (3.1) 

at/& = 1, d x l d s  = R, (3.2) 

and the characteristic equations are 

where s is a parameter along the rays. The crucial feature is that along the rays the 
partial differential equation (2.3) turns into an ordinary differential equation 

(3.3) d$/& = - (U - R)'/~K. 

Thus, the rate of exponential decay of the concentration depends upon the magnitude 
of the difference between the local velocity and the ray velocity. 
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The complete characteristic system of equations (Courant & Hilbert, chapter 2, 
$7, equation (2)), includes in addition to equations (3.2), (3.3), equations for the 
rates of change of at$ and V$ along rays. The first of these yields a ray invariant 

at$ = constant along rays, 

dR/ds = V($u2) - R,(V,u). 

(3.4) 

and the second can be more usefully cast as an equation for the rate of change of R: 

(3.5) 

Thus, when R is relatively small, the rays are primarily refracted towards regions of 
stronger current, and when R is large (i.e. the tails of the concentration distribution) 
the rays tend to rotate in the same sense as the vorticity. 

Comparison of (3.5) with the identity 

(u.V)u = v(~u~)-u,(v,u) ,  (3.6) 

enables us to infer that if initially R = u, then the ray continues to move with the 
fluid for all time. Equivalently, in the limit of large PBclet number, the centre of the 
contaminant distribution, where Vq5 = 0, is advected with the fluid velocity. 

4. Transport equation 

ray paths, but so also does the ‘transport’ equation (2.4) : 
Not only does the eikonal equation turn into an ordinary differential equation along 

d A l d s - A ~ V ~ $  = 0. (4.1) 

As if this was not enough good fortune, we can solve this equation without the need to 
evaluate the second derivative V2q5 (Cohen & Lewis 1967, equation (5.2.17)). 

To do this we introduce a set of ray parameters p (for example the initial value of 
R - u) and consider the ray separation 

J = a(t, x)/a(s, PI. (4.2) 

Making repeated use of the chain rule 

a2x/ap as = (axlap. v) ax/as, 
we can derive the relation 

d J / d S  = J V .  R = - 2KJV2$. 

An immediate implication is that 

AJ+ = constant along rays. (4.5) 

Hence, the greatest concentrations are to be determined where the rays are closest 
together. 

To evaluate the ray constants in (3.4) and ( 4 4 ,  we examine the solution very close 
to the source. For sufficiently short times the non-uniformity of the velocity field can 
be neglected and we have the elementary solution 
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with n = 2 ,3  depending upon the dimensionality of the source. If R, denotes the 
initial value of the ray velocity, then locally we have 

x = x0+Ros, 

$ = - (t  - t o )  (Ro - U0)'/4K, 

A = pgn/[4,KS]tn. 

t - t o  = S, (4.7a, b )  

(4.7c) 

(4.7d) 

Hence we infer that $ = 0 at  the source, and we can evaluate the ray constants 

at$ = - (R, - u0)2/4~  along rays, 

A J ~  = lim {PW~/[~~TKS]*~} along rays. 
5-0 

5. Reflection at boundaries 
In wave problems, boundaries can be dealt with simply by the inclusion of reflected 

waves. Here we show that the same is true for the ray solution of a diffusion equation. 
The most commonly occurring boundary conditions are that either the contaminant 
flux or the concentration be zero. To include both these limits we investigate the 
slightly more general boundary condition 

n.(uc-P-kVc)-Pc = 0 on aQ. (5.1) 

Here n is the outward normal, and /3 a reaction coefficient. 
To solve (2.1) with the boundary condition (5.1), we pose the ansatz 

c = Arexp V#i) + A R ~ X P  (P#R).  (5.2) 

In order to match the rapidly varying exponential decay rates we must have 

C p I =  C p R  on aQ. (5.3) 

This applies whatever the boundary conditions. For the amplitude factors we have the 
problem-specific conditions 

[~.(u-KV$~)-P]A~+[~ . ( U - K V $ ~ ) - / ~ ] A ~  = 0 on aR, (5.4) 

where we have neglected terms of order P-l. 
Along rays the eikonal equation takes the form 

(u - 2KV#)2 = u2 - (R() - uo)2, (5.5) 

where we have made use of the ray invariant (4.8). Geometrically, this can be inter- 
preted as constraining the gradient vector ~ K V #  to a circle with centre u, and with 
the ray velocity R directed towards the centre of the circle (see figure 2). At the 
boundary, the values of at$ are the same for both the incident and reflected rays. 
Thus, the invariant (4.8) is preserved under reflection and the circle radius in (5 .5)  
is the same for the two rays. Also, the condition (5.3) implies that the components 
of VCp along the boundary are the same for the two rays. This has the geometrical 
consequence that the ray direction is reflected at  the boundary with the angle of 
incidence equal to the angle of reflection (see figure 2). 
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FIGURE 2. Geometrical interpretation of the eikonal equation, showing the 
relationship between incident and reflected rays at a boundary. 

The contaminant flux velocity can be written as the mean value of the flow velocity 
and the ray velocity: 

u - K V ~  = ~ ( u + R ) .  (5.6) 

Since R reflects normally at the boundary, the amplitude boundary condition (5.4) 
becomes 

A ,  = A, [n. R, - (2p- u.  n)]/[n. R, + (2p- u. n)]. (5.7) 

Thus, if the reaction coefficient p exceeds half the suction velocity u . n, then for all 
raya the reflected amplitude is less than the incident amplitude. In the important 
limiting case of a non-reacting boundary with zero suction we have equality between 
the reflected and incident amplitudes: 

A , = A ,  when n . V c = O  on 8 0 .  (5.8) 

6. Local solution 
Barton (1978,s 4) points out that one important application of a short-term solution 

is to provide starting conditions for a subsequent numerical scheme. For this purpose 
the global ray solution is unnecessarily complicated, and it suffices to calculate the 
local solution near the centre of the contaminant cloud. 

For large Pbclet numbers it may be necessary to follow the contaminant cloud for 
a substantial distance before it becomes large enough to be resolved by a numerical 
scheme. Thus we transfer the origin of our Cartesian co-ordinate system to the fluid 
element at the centre of the cloud: 
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Next, instead of the fullray-tracing equations (3.2), (3.5) and (3.3), we solve thelinear 

approximations d2JdS = Pi + (aui/ihj) Oj, ( 6 . 2 ~ )  

(6.2b) 

(6 .2~)  

Here the rate-of-strain matrix (aui/axj) is a function of the time of travel s along the 
flow path. 

To write the solutions in compact form we introduce the distortion matrix E and 
its inverse E-l: 

with 

( 6 . 3 ~ )  

(6.3b) 

(6 .3~)  

The corresponding solutions of the linearized equations (6.2) are 

(6.4b) 

(6 .4~)  

To evaluate the ray separation (4.2), we must differentiate Oi with respect to Pj(0) 
and then take the determinant 

J = det [ (E-1)il/08 Elk(7) E j k ( 7 )  d7] . 
Since there is a linear relationship between Oi and Pj(0) we can infer that the decay 

exponent # is a homogeneous quadratic. Equivalently, the shape of the contaminant 
cloud evolves from its initial spherical shape into an ellipsoid. This local result is 
confirmed in the next two sections when we construct the global ray solutions. An 
exceptional case is when aui/axj is locally zero, and the contaminant cloud remains 
spherical until it  is reasonably large (see figure 8 below). 

7. A source near a stagnation point 

position xo, yo in an irrotational flow 
Chatwin (1974) gives an explicit solution for a discharge released from an arbitrary 

u = (lx, -ly, O), (7.1) 

with an impermeable boundary along the streamline y = 0 (see figure 3). 
In the ray method the first task is to determine the (two-dimensional) ray paths 

dt/ds = 1 ,  d x / d s  = R,  d R / d s  = Px, (7.2) 

(equations (3.2), (3.5)). The solution can be written as a two-parameter family: 

x = xo:,d~+psinhls, y = yoe-'s+qsinhls, (7.3~2, b) 

(7.3c, d )  R, = lx + lpe4, R, = - ly i- 1q&, 
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FIGURE 3. Streamlines and ray paths for flow near a stagnation point. 
0,  h = 0; ., h = 0.5; A, I8 = 1; +, h = 1.5. 

where 121, lq are the initial components of the vector R - u. For negative q, the rays 
intersect the boundary and the reflected rays are given by 

y = -yo e* - q sinh 18, R2 = - ly - 1qels, (7.4a, b )  

together with the formulae for x and R, unchanged. 
Along both families ofrays the equation (3.3) for the decay exponent has the solution 

9 = - [p2( 1 - e-%) +q2(ess- l ) ] / 8 ~ .  (7.5) 

Also, the Jacobian (4.2) for the ray separation has the value 

J = sinh2ls. (7.6) 

Thus, from (4.9), with n = 2, we find that the amplitude factor is given by 

A, = A, = P1/4n~  sinh 18. (7.7) 

To translate our solution back from ray variables ( p , q , s )  to physical variables 
(2, y,t), we invert (7.3) and (7.4): 

(7.8a, b )  

( 7 . 8 ~ )  

Adding together the incident and reflected ray solutions we obtain 

P1 
4 n ~  sinh It 

C =  
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2 
FIGURE 4. Concentration contours for a point release of contaminant in a 

stagnation flow. 

This is identical to the solution given by Chatwin (1974). Thus, i t  happens that in this 
case the ray solution is exact rather than being an asymptotic approximation valid 
for large P. By contrast, the Taylor series expansion derived by Barton (1978, $4)  
is useful only for It < 0.2 (i.e. the time during which the curvature of the streamlines 
can be neglected). 

For illustrative purposes figure 4 shows concentration contours at times It = 0.5,1,1-5 
for a stagnation flow with P6clet number P = 100. The effect of the shear distortion is 
to elongate the contaminant cloud in the x-direction. For the earliest of the three 
times, the dotted contours confirm that Barton's three-term series approximation is 
already beyond its range of validity. 

8. Initial dispersion near a point vortex 

vortex. In polar co-ordinates the velocity field is 
Following Barton (1978), we take as our second example the flow near a point 

(8.1) u = (0, a/ r ,  0). 

The two-dimensional ray-tracing equations (3 .2 )  and (3 .5)  take the form 

(8 .2a ,  b ,  c )  

(8 .2d,  e )  

(Note the additional terms which arise owing to the changing orientation of the co- 
ordinate direction as 6 varies.) In the 6-direction there is conservation of angular 
momentum along rays: 

where q is a ray parameter. The solution in the radial direction is 
dO/ds = a.q/r2, (8.3) 

(8.4) r = [r; + 2ups + aZ(q2 - I )  s2/rt]*. 
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FIGURE 5. Velocity profile and ray paths for flow near a point vortex. 
0 ,  atlr; = 0; m,  at/^: = 1; A, at/$ = 2; +, at16 = 3. 

Thus, ifthe values of the ray parametersp, q are such that either q2 < 1 orp < - [q2 - 11) 
then the rays eventually go through the eye of the vortex (see figure 5 ) .  

Strictly, the solution for t9 has two different branches depending upon the sign of 
p 2  + 1 - q2. However, it is mathematically convenient to combine these into the single 
expression: 

where any logarithms of complex argument can be re-expressed in terms of arc- 
tangents. We note that there is a logarithmic singularity in 8 for those rays which 
approach the vortex (i.e. the rays spiral faster and faster near the origin). Thus a local 
analysis of this region would be required if we wished to extend the rays across the 
singularity. 

Substituting the above results (8.4) and (8.5) for the ray paths into (3.3), we find 
that the decay exponent 9 is given by 

Similarly, the Jacobian (4.2) for the ray separation can be written as 
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3 C  \ \  vortex 

FIGURE 6. Concentration contours for a point release in a two-dimensional vortex flow. 

In particular, if we set q = 1 and take the limit asp  tends to zero, we find that, at  
the centre of the contaminant cloud, 

qi = 0 and J = (a.s/r~)2++(a.s/ri)4. (8 .8 )  

Thus, for small times, the peak concentration decays following the diffusion-equation 
result, 

A N P/47TKt, 

but at  large times the effect of the shear leads to a much more rapid decay rate: 

A - P3*ri/4mat2. (8.10) 

By neglecting the transmission of rays across the vortex, the present theory is 
restricted to times less than that required for a significant amount of contaminant to 
diffuse towards the vortex. Close to the origin we can use (8.4) to eliminate p in favour 
of q. Thus, from (8.6) we find that the dominant (singular) contribution to the decay 
exponent is given by 

qi = [{ 1 + (q2 - 1 l2 (as/ri)4}* + 4(as/ri)2 (q - 1 1 2  { 1 + (92 - 1 )a (ols/~i)~}-*I 

x (ri/S~8)In ( r2/r i ) .  (8.11) 

(8.12) 

This has a minimum at q = 1 ,  with the value 

qi = ( r i / 8 ~ 8 )  In (r2/ri). 

Hence a sufficient condition for the applicability of the present theory is that 

' S = t < P r $ / 8 ~ .  (8.13) 

Since the PQlet number P is assumed to be large, this is much less stringent than the 
upper bound 0*15ri/a for the validity of Barton's (1978) analysis. 

Figure 6 shows concentration contours at  times at/ri = 1 , 2 , 3  in a vortex flow with 
Pdclet number P = 100. As is also apparent in Barton's figure 2, the concentration 
contours tend to drift outwards and do not merely follow the particle paths. The ray 
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interpretation of this feature is that the rays, and hence the contaminant flux, tend 
to be strongest towards the origin. Thus, the erosion of concentration is greatest a t  
the inside, giving the illusion of the contaminant distribution drifting outwards. 
The local solution derived in tj 6 would suggest that the concentration cloud should 
initially be elliptical with principal axes inclined at  45 degrees to the flow direction. 
This is in good agreement with the results at  the earliest of the three times. However, 
there are substantial banana-like distortions when the contaminant cloud becomes 
large. 

9. Initial dispersion in plane Poiseuille flow 

flow: 
As our final example we again follow Barton (1978) and investigate plane Poiseuille 

u = 'ii(8 - $(y/b)', 0, 0 ) ,  - b < y < b,  (9.1) 

where U is the bulk velocity, and 2b is the separation between the rigid impermeable 
walls. 

The ray equations (3.2) and (3.5) take the form 

- =  at 1,  ax - =  R,, dY z = R 2 ,  
as as 

(9.2a, b, c) 

- 
E 1 = - 3 - R  b 2 b '  (") - c2 as = " I " [ ( y ) ' - ( [ ) ] + F R , ( $ .  2b 

(9.2d,e) 
as 

The equation for R, can be integrated to give the neat result 

R, - ul(y) = pii = constant along rays. (9.3) 

Thus, in the longitudinal direction the ray velocity differs from the local velocity by 
a fixed amount. Moreover, this discrepancy is unchanged upon reflection of the rays 
at  the two boundaries. 

From the R, equation we now find that the ray position across the flow satisfies the 
constant coefficient ordinary differential equation 

d2y/ds2- 3 ~ ( S / b ) ~ y  = 0. (9.4) 

Thus, the solution is hyperbolic or trigonometric according as the rays move faster 
or slower than the local current. When we take into account the reflection at  boundaries, 
we find that for p > 0 the solution can be written 

with 
y = yo cosh 6 + bq sinh c/( 3p)*, 

6 = (3p)t (Uslb) - mA. 

(9.5a) 

(9.5b) 

Here q is a ray parameter, the integer m counts the number of times that the ray has 
been reflected at the boundaries, and the periodicity A is defined by 

sinh A = 2 ( 1  + f - (F)2r/l f - (f)2 I. 
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For p < 0 the solution is the analytic continuation of equations (9.5), (9.6) with cosh 
and sinh replaced by their trigonometric counterparts. An important difference is 
that in the parameter range 

the rays never reach the boundary. Thus, there is total internal reflection and we can 
set m = 0. 

Integrating the equation dx/ds = R,, we find that the ray position along the flow 
is given by 

!la < - 3241 - (Yo/b)2), (9.7) 

x - x o  = 5i.s [ p+--- ; ;(f)2+g]-;$*(1+g)-(92)* 
cash 25- '1. (9.8) 

3 yo q2 sinh2c 
[z (5;)'+G] w-'yoq[ 6p 

We note that the definition (9.6) of the periodicity with respect to 5 makes it possible 
for us to eliminate the reflection number m in favour of the time parameter s. 

The geometry of the ray paths (see figure 7) can be understood by reference to the 
general principles noted in Q 3. The flow velocity is greatest along the centre line, and 
the vorticity is anti-clockwise or clockwise according as y / b  is positive or negative. 
For rays with R small (i.e., p negative and q small) the dominant influence upon the 
ray curvature is the tendency to bend towards the region of strongest current. This 
describes the sinuous rays which undergo total internal reflection (see figure 7(i)). 
Then, as R gets larger, the rays tend to rotate in the same sense as the vorticity. For 
backward-moving rays, with p negative, this again implies that the rays curve back 
towards the centre-line (figure 7 (ii)). However, for forward-moving rays, the same 
sense of rotation has the opposite effect and leads to rays which curve away from the 
centre line (figure 7 (iii)). Finally, if the cross-stream component of the ray velocity R 
is sufficiently large, then we get rays which manage to cross between the boundaries 
despite the opposing curvature (figure 7 (iv)). 

From the eikonal equation (3 .3) ,  we find that the decay exponent g5 can be written 

= @ 2K ((x - xo) - #as [ 1 + p  - @)2 + 4). (9.9) 

(i.e. exponential decay with respect to distance in axes moving at constant velocity.) 
For m = 0 the Jacobian (4.2) for the ray separation is given by the formula 

[sinh 6 
J = b2- +-- 3 yg sinh [[sinh 25- 251 

3P 1 6 P  3P 

16p2 313 
3yObq sinh [[cash 25- 1 - 25'1 
8 P  

b2 q2 [sinh2gsinhy+ 25sinh[-4c2cosh[] +-- 

(3P)Q 
+-- (9.10) 
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FIUURE 7. For caption see p. 121. 
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FIGUBE 7. The variety of ray paths for plane Poiseuille flow. 

0 Source 

0 a 
Y 

a 16 
// 

l* 24 
FIGURE 8. Concentration contoura for a centre-line discharge in plane Poiseuille flow. 

Although J is continuous at reflection, the explicit formula for m > 0 is extremely 
lengthy and, consequently, is omitted here. We note that as p and q tend to zero, 

(9.11) 

Thus, as was the case in the previous example, the local velocity shear leads to a 
transition from t-l to a t-2 decay law for the peak amplitude: 

(9.12) 



122 R. Smith 

Figure 8 shows concentration contours at  times 5t lb  = 5,10,15 for a centre-line 
discharge in plane Poiseuille flow with P6clet number P = 100. For this particular 
discharge site, the amount of shear experienced across the contaminant grows as t ,  
rather than the more usual ti result. Thus the shear distortion is imperceptible until 
comparatively large times and then grows very rapidly. The persistence of the con- 
taminant a t  the centre of the flow is exaggerated by the strong dilution caused by the 
velocity shear far from the centre line. As in all the previous examples, these results 
are at times an order of magnitude beyond the range of validity of the methods used 
by Chatwin (1976, 1977) and by Barton (1978). 

This work was supported by B.P. through the award of the Royal Society British 
Petroleum Company Limited Senior Research Fellowship. 
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